Markov chain Monte Carlo inference for Markov jump processes via the linear noise approximation.
نویسندگان
چکیده
Bayesian analysis for Markov jump processes (MJPs) is a non-trivial and challenging problem. Although exact inference is theoretically possible, it is computationally demanding, thus its applicability is limited to a small class of problems. In this paper, we describe the application of Riemann manifold Markov chain Monte Carlo (MCMC) methods using an approximation to the likelihood of the MJP that is valid when the system modelled is near its thermodynamic limit. The proposed approach is both statistically and computationally efficient whereas the convergence rate and mixing of the chains allow for fast MCMC inference. The methodology is evaluated using numerical simulations on two problems from chemical kinetics and one from systems biology.
منابع مشابه
Delayed acceptance particle MCMC for exact inference in stochastic biochemical network models
Recently proposed particle MCMCmethods provide a flexible way of performing Bayesian inference for parameters governing stochastic kinetic models defined as Markov jump processes (MJPs). Each iteration of the scheme requires an estimate of the marginal likelihood calculated from the output of a sequential Monte Carlo scheme (also known as a particle filter). Consequently, the method can be extr...
متن کاملStatistical inference for discretely observed Markov jump processes
Likelihood inference for discretely observed Markov jump processes with finite state space is investigated. The existence and uniqueness of the maximum likelihood estimator of the intensity matrix are investigated. This topic is closely related to the imbedding problem for Markov chains. It is demonstrated that the maximum likelihood estimator can be found either by the EM algorithm or by a Mar...
متن کاملUnivariate Polynomial Inference by Monte Carlo Message Length Approximation
We apply the Message from Monte Carlo (MMC) algorithm to inference of univariate polynomials. MMC is an algorithm for point estimation from a Bayesian posterior sample. It partitions the posterior sample into sets of regions that contain similar models. Each region has an associated message length (given by Dowe’s MMLD approximation) and a point estimate that is representative of models in the ...
متن کاملMCMC for hidden continuous - time
Hidden Markov models have proved to be a very exible class of models, with many and diverse applications. Recently Markov chain Monte Carlo (MCMC) techniques have provided powerful computational tools to make inferences about the parameters of hidden Markov models, and about the unobserved Markov chain, when the chain is deened in discrete time. We present a general algorithm, based on reversib...
متن کاملMonte Carlo Methods and Bayesian Computation: MCMC
Markov chain Monte Carlo (MCMC) methods use computer simulation of Markov chains in the parameter space. The Markov chains are defined in such a way that the posterior distribution in the given statistical inference problem is the asymptotic distribution. This allows to use ergodic averages to approximate the desired posterior expectations. Several standard approaches to define such Markov chai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
دوره 371 1984 شماره
صفحات -
تاریخ انتشار 2013